Radionuclide therapy of HER2-positive microxenografts using a 177Lu-labeled HER2-specific Affibody molecule.
نویسندگان
چکیده
A radiolabeled anti-HER2 Affibody molecule (Z(HER2:342)) targets HER2-expressing xenografts with high selectivity and gives good imaging contrast. However, the small size (approximately 7 kDa) results in rapid glomerular filtration and high renal accumulation of radiometals, thus excluding targeted therapy. Here, we report that reversible binding to albumin efficiently reduces the renal excretion and uptake, enabling radiometal-based nuclide therapy. The dimeric Affibody molecule (Z(HER2:342))(2) was fused with an albumin-binding domain (ABD) conjugated with the isothiocyanate derivative of CHX-A''-DTPA and labeled with the low-energy beta-emitter (177)Lu. The obtained conjugate [CHX-A''-DTPA-ABD-(Z(HER2:342))(2)] had a dissociation constant of 18 pmol/L to HER2 and 8.2 and 31 nmol/L for human and murine albumin, respectively. The radiolabeled conjugate displayed specific binding to HER2-expressing cells and good cellular retention in vitro. In vivo, fusion with ABD enabled a 25-fold reduction of renal uptake in comparison with the nonfused dimer molecule (Z(HER2:342))(2). Furthermore, the biodistribution showed high and specific uptake of the conjugate in HER2-expressing tumors. Treatment of SKOV-3 microxenografts (high HER2 expression) with 17 or 22 MBq (177)Lu-CHX-A''-DTPA-ABD-(Z(HER2:342))(2) completely prevented formation of tumors, in contrast to mice given PBS or 22 MBq of a radiolabeled non-HER2-binding Affibody molecule. In LS174T xenografts (low HER2 expression), this treatment resulted in a small but significant increase of the survival time. Thus, fusion with ABD improved the in vivo biodistribution, and the results highlight (177)Lu-CHX-A''-DTPA-ABD-(Z(HER2:342))(2) as a candidate for treatment of disseminated tumors with a high level of HER2 expression.
منابع مشابه
Radionuclide Therapy of HER2-Positive Microxenografts Using a Lu-Labeled HER2-Specific Affibody Molecule
A radiolabeled anti-HER2 Affibody molecule (ZHER2:342) targets HER2-expressing xenografts with high selectivity and gives good imaging contrast. However, the small size (f7 kDa) results in rapid glomerular filtration and high renal accumulation of radiometals, thus excluding targeted therapy. Here, we report that reversible binding to albumin efficiently reduces the renal excretion and uptake, ...
متن کاملLabelling chemistry and characterization of [90Y/177Lu]-DOTA-ZHER2:342-3 Affibody molecule, a candidate agent for locoregional treatment of urinary bladder carcinoma.
The direct instillation of radiolabelled conjugates in the urinary bladder is a promising path for the treatment of bladder carcinoma. The targeting of HER2/neu receptors expressed on the surface of many bladder carcinoma cells shows potential to be developed as a therapeutic strategy, and patients identified with a high risk of progression may benefit from adjuvant targeted radionuclide therap...
متن کاملHER2-positive tumors imaged within 1 hour using a site-specifically 11C-labeled Sel-tagged affibody molecule.
UNLABELLED A rapid, reliable method for distinguishing tumors or metastases that overexpress human epidermal growth factor receptor 2 (HER2) from those that do not is highly desired for individualizing therapy and predicting prognoses. In vivo imaging methods are available but not yet in clinical practice; new methodologies improving speed, sensitivity, and specificity are required. METHODS A...
متن کاملSelection of an optimal cysteine-containing peptide-based chelator for labeling of affibody molecules with (188)Re.
Affibody molecules constitute a class of small (7 kDa) scaffold proteins that can be engineered to have excellent tumor targeting properties. High reabsorption in kidneys complicates development of affibody molecules for radionuclide therapy. In this study, we evaluated the influence of the composition of cysteine-containing C-terminal peptide-based chelators on the biodistribution and renal re...
متن کاملSelection and characterization of HER2/neu-binding affibody ligands.
Affibody (affibody) ligands that are specific for the extracellular domain of human epidermal growth factor receptor 2 (HER2/neu) have been selected by phage display technology from a combinatorial protein library based on the 58 amino acid residue staphylococcal protein A-derived Z domain. The predominant variants from the phage selection were produced in Escherichia coli, purified by affinity...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 67 6 شماره
صفحات -
تاریخ انتشار 2007